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AERODYNAMIC COEFFICIENT DERIVATIVES OF SONIC
MISSILES VIA SLENDER BODY THEORY

INTRODUCTION

The Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program is involved in
continuing development of simulation facilities at NRL to allow U.S. Navy investigation of the
interaction between anti-ship missiles and shipboard defensive electronic warfare (EW) systems.
Over the past four years, the ENEWS Program has developed techniques for assessing evolving
EW systems using mathematical models in simulation programs on digital computers.

The advent of this new generation of models is supplemented by the arrival of new
methods of missile analysis for accomplishing the intent of EW simulations. To achieve realis-
tic simulation, it is imperative that the aerodynamic properties of the threat missiles to be
modeled must be closely approximated using valid analytic results. This report forms a link in
the chain of continuing investigations intended to assess missile threats, current and projected.
This continuing assessment is an essential input to the evaluation and enhancement of elec-
tronic warfare systems intended to counter missile threats.

At its current stage, this assessment program is developing expeditious and versatile pro-
cedures for estimating transonic aerodynamic coefficient derivatives. These values are required
in computer simulations that incorporate missile flight behavior. This information is also useful
in determining outer limits for the maneuvering capability of a missile, thus providing inputs to
bounding the potential capabilities of threats. An analytic ability to determine aerodynamic
coefficient derivatives is essential for the comprehensive study of missile-EW engagements.
These coefficients depend upon the geometric configuration of the missile, including control
surface positions, the velocity of the air stream relative to the missile, and the orientation of
the missile relative to the air stream. The values of the various aerodynamic coefficient deriva-
tives may be estimated using wind-tunnel tests on missile models, or alternatively, by means of
analytic calculation. Although wind-tunnel tests are preferred from the point of view of accu-
racy and validity, the great expense involved in performing them must be taken into account.
Wind-tunnel tests will continue to be used to determine the aerodynamic coefficient derivatives
for a few of the more important missiles. For the multitude of others, it would be preferable to
have and utilize a capability for making analytic estimates of these coefficients.

This problem becomes tractable for missiles with moderate aspect ratios at sonic speeds.
In such cases assumptions may be introduced which greatly simplify the mathematical descrip-
tion of the problem. By treating a missile of moderate aspect ratio as a thin profile and regard-
ing the flow about the missile as a perturbation of a uniform flow, it follows that the basic equa-
tion of a perfect gas can be rendered linear. Requiring, in addition, that the flow be sonic
reduces the formulaton to that of slender body theory.

Manuscript submitted August 9, 1978.
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In addition to satisfying a number of requirements for sonic missile analysis, these evalua-
tions would be useful in missile analysis outside the sonic range. Slender body theory may be
used to find wing-body interference factors that can be used to determine valid estimates of the
subsonic and supersonic values.

Caution should be exercised however in applying the results of slender body theory. The
direct results of this theory should be tempered with some understanding of transonic flow and
its many complexities, otherwise the uninformed user could potentially be led into attributing
properties to transonic vehicles which are erroneous.

The theoretical development on which the estimation of these coefficient derivatives is
based will be outlined herein. This theory reduces the problem to one of solving a two-
dimensional potential cross-flow problem. In the special case where a cross section of the mis-
sile is a circle with mid-wing, there are analytic solutions for the potential-flow problem. For
other cross sections, a computer program has been developed in the course of this investigation
that can be used to solve the two-dimensional potential cross-flow problem.

SUMMARY OF PROCEDURE FOR COEFFICIENT
DERIVATIVE DETERMINATION

This report embodies a procedure for determining the sonic aerodynamic coefficient
derivatives of a missile, given its geometric configuration. This procedure is summarized and
certain equations are referred to that will be discussed or derived later in the report. According
to this procedure, certain cross section profiles are chosen at various locations along the length
of the missile. Each individual cross-section profile is subjected to analysis using a computer
program designed to determine cross flows. To obtain input for this computer program, it is
necessary to express the cross-section profile quantitatively. To accomplish this, the profile may
be broken down into line segments and arcs, representing each with a few numerical parame-
ters. Another input to the computer program is a set of boundary conditions that is determined
by body angle and control surface deflections. From these inputs, the cross-flow program com-
putes the apparent area, that is a quantity representing the overall aerodynamic effect of a cross
section. The cross-flow program represents the major portion of the computational effort in
determining the aerodynamic coefficients. By use of Eqs. (38)-(41), the apparent areas are
translated into the aerodynamic coefficient derivatives characteristic of the individual cross sec-
tions.

The aerodynamic coefficient derivatives characteristic of the overall missile are obtained
from the coefficient derivatives characteristic of cross sections using Eqs. (42)-(51). Among
the other inputs to these equations are the positions of chosen cross sections and the moment
reference center.

AERODYNAMIC COEFFICIENT DERIVATIVES DEFINED

A number of the more important aerodynamic coefficient derivatives will be defined after
the introduction of notations and figures that describe and illustrate the mathematical expres-
sions and sign conventions used. All angles are expressed in degrees.

The notations used in defining the aerodynamic coefficient derivatives are presented next
and in Figs. 1 and 2.
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Fig. I - Pitch notation and conventions
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Fig. 2 - Yaw notation and conventions
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FN(r, 8 P)
Fy(,, 8 y).
M(a, 8P,@)
N(MP, 8y. tP)

q - 2 pV22 w

S - irb2/4
V00
a

p

~y

(reference diameter)
(normal force)
(side force)
(pitching torque)
(yawing torque)

(dynamic pressure)

(reference area)
(free stream velocity)
(angle of attack)
(sideslip angle)
(elevator angle)
(rudder angle)
(angular velocity of pitch)
(density of air)
(yawing angular velocity)

The pitch aerodynamic coefficient derivatives considered are defined as follows:

CN = I -FN
qS 8a 

CN8 = I OFN
qS 68p '

= 1 aM
Cma= qSb 6a

Ciq = 2V00 8M
qSb2 ab

= 1 aM
qSb 88p-

These sets of coefficient derivatives may be used to express the normal force due to angle
of attack and elevator angle. Thus,

FN = qS (CNa + CN8S). (6)

The equation for pitching torque due to angle of attack, elevator angle, and angular velo-
city of pitch is

M = qSb(C,na + C.88P) + 2qV Cmq 0.

The yaw aerodynamic coefficient derivatives used herein are defined as follows:

1 OFYCYA = Is 6Fy

(7)

(8)
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(3)

(4)
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CY q = 15aY (9)

qSb A' (10)

Cnr - qSb2 '(

and

1" ON (12)
qSb as (y

The yaw coefficient derivatives may be used to express the side force due to sideslip angle
and rudder angle. Thus,

Fy= qS(CygG/ + Cy88y). (13)

Yawing torque due to sideslip angle, rudder angle, and angular velocity of yaw is
expressed as

N = qSb(C /,3+ C,28Y) + -2 Cod. (14)

SLENDER BODY THEORY

In setting forth the rationale underlying the use of slender body theory, it is assumed that
we are dealing with the flow of a perfect gas about a solid body. The velocity potential 1' for
the flow of this compressible fluid is governed by the following partial differential equation [1]:

[ I£ 121 2 r 1 I 1212q

[i- 1 l8¢ 2 F 1 1 O8 fl 02 (15)
l C2 laxi ax2 + c2 ay ay2

r I f, _121 _24 2 as_ a_ _ a 2q

2 az C2 ax ay axay
2 as) asF a2c_ 2 as 64s a202
c2

ay az ayaz c2 ax az axaz

= 0,

where the spatial coordinates are denoted by x, y, and z. The local velocity of sound c is given
by

c2 = c 2 _ k - I [| as 12 + I as 12 + a1 (16)c~ 0 I + -6 
2 Ox a y J z (6

where the following notation is used:

CO (stagnation value for the speed of sound)
k = CpIC, (ratio of the specific heats)
CP (specific heat at constant pressure)
C, (specific heat at constant volume)
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Next, the previously given partial differential equation is linearized. To do this, consider a flow
about a thin profile which is parallel to the free stream. This flow may be represented as a uni-
form flow plus a small perturbation. In the following equation the velocity potential (F is
represented as a uniform flow potential VOx plus a velocity perturbation potential ,.

() = Vx + q0. (17)

Substituting Eq. (17) into Eqs. (15) and (16) results in a differential equation for the velocity
perturbation potential. Upon linearization, the equation becomes

2 020 + P20 + P2= 0, (18)
ax 2 ~ + 2

where

V2 1 - Ml, (19)

M-= Vj/c-, (20)

and

C2 = C2 _ k I V2 (21)
0 2 -

The development that results when the first term in Eq. (18) is neglected is referred to as
"slender body theory". This theory yields the following equation:

a 2o + 820 = lo (22)
Oy,2 az 2

According to this approximation, only flow perturbations confined to planes perpendicular to
the body are considered significant.

The primary application of slender body theory is, as the name suggests, to slender
bodies. These are configurations whose lateral dimensions such as span and thickness are small
compared to their length. And, for this type of missile, the expression a 20/80x2 in the first
term of Eq. (18) may be neglected, giving rise to Eq. (22).

Slender body theory may also apply to sonic flows about non-slender bodies. The small
disturbance assumption is still valid for a thin wing-body combination with a moderate finite
aspect ratio, and for sonic flows y in Eq. 18 may be neglected, again resulting in Eq. (22).
Under these conditions, slender body theory will provide a first-order approximation to sonic
lifting flows [2].

Next, it is shown just how estimates of the aerodynamic coefficient derivatives may be
obtained using slender body theory. Consider an infinite slab of air of thickness dx perpendicu-
lar to and moving with the free stream. According to Eq. (22), a two-dimensional potential
flow within the slab is assumed. The problem of the missile cutting through the slab, as illus-
trated in Fig. 3, may be treated as a plane flow with an immersed two-dimensional region. The
moving boundary contour of this region provides boundary conditions for the potential flow.
The effect of missile angle of attack is to impart a uniform velocity to the contour within the
plane, as illustrated in Fig. 4.
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Fig. 3 - Missile cutting through a slab of air

Fig. 4 - Effect of body angle
on boundary conditions

The effect of control surface deflection is to impart a velocity to that part of the contour
corresponding to the control surface as illustrated in Fig. 5. An increase in size and extent of
the missile cross section as it cuts through the slab gives a point on the contour an outward
velocity as shown in Fig. 6.

An additional boundary condition is provided by a zero fluid velocity at infinity in the
cross-flow plane. These conditions determine (except for an additive constant) the two-
dimensional velocity potential k within the slab.
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t t t t t t_

Fig. 5 - Effect of control surface angle
on boundary conditions

/

Fig. 6 - Effect of expanding cross section
on boundary conditions

The total momentum vector of the flow dP is expressed in the following equation as a
surface integral of the momentum density, over the region exterior to the boundary contour:

dP = dx f fjp V dA, (23)

where the following notation is used:

dP (total momentum vector in slab)
dx (thickness of slab)
V (local velocity vector of fluid within plane slab)
dA (element of surface area)

The surface integral in Eq. (23) may be expressed as a line integral around the boundary con-
tour as follows:

dP = dx p Of dz, (24)

where dz is an outward normal vector representing an element of arc length along the boundary
contour.

8
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The force vector dF on a missile cross-sectional element will be equal and opposite to the
rate of increase of momentum in the slab.

This is expressed as

dF = _ d (dP). (25)
dt

Taking into consideration that the missile is cutting through the slab with a velocity V-, Eq.
(25) becomes

dxd F - V dx (d P). (26)

Slender body theory has greatest validity for wings with monotonically increasing span [3].
In calculating particular aerodynamic coefficient derivatives, the analyst will not, in most cases,
be dealing with the simple case of a gradually expanding contour. The body may be tapered so
that it gives a contracting contour, or, as at the trailing edge of a wing, there may be a discon-
tinuous reduction in the extent of the contour.

In order to deal with these situations, it will be taken as a hypothesis that Eq. (26) gives
the dF only when the magnitude of dP is increasing along the axis of the missile. Otherwise,
dF will be taken to be zero.

To obtain the total lateral force vector F on a missile, the force vector dF on a cross sec-
tional element is integrated along the length of the missile, the coordinate x being used to
denote positions along that length down stream from the nose. Consider an interval along the
length of the missile over which the magnitude of dP is increasing. The total lateral force on
this interval is expressed as

X XB

F= f dF. (27)
X =XA

Here, XA and XB are the end points of the interval. The integration is carried out after substi-
tuting Eq. (26) into Eq. (27), thus obtaining

x =x
dP 

F =-VO d P (28)dx X=XA

Substituting Eq. (24) into Eq. (28) results in the following equation for the total lateral force
on the interval:

X-XB

F=- V,,py X dz (29)
X-XA

A particular missile cross section with a specified direction of motion within a cross-flow
slab could be characterized using the conventional quantity apparent mass. However, we shall
define a related quantity, the apparent area of the cross section, a more convenient unit to

9
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express this concept. We define this vector quantity according to the following equation, where
the surface integral is over the region exterior to the boundary contour:

A =--f f V dA. (30)

The expression V, is a velocity naturally associated with the motion of the contour in the
cross-flow plane. This will generally be either the uniform velocity of the contour due to body
angle or the velocity of that portion of the boundary representing a control-surface deflection.
It is given as follows:

VI = 180 |F ,.(31)

Here, q is the body angle or control-surface deflection. The velocity Vi may also be due to the
angular velocity of pitch or yaw denoted by co. In this case it is given by

VI= 1,80] ix -x a'Io (32)

Here, xc denotes the position of the moment reference center measured downstream from the
nose and chosen to coincide with the center of gravity.

The significance of the apparent area is that the apparent mass of the cross section is
given by pIAIdx, and the momentum of the cross flow is given by p VcAdx. The apparent area
may be expressed as the following contour integral:

A = 1 f~dz. (33)

Note that the forgoing expression does not depend on the magnitude of V, since the boundary
condition values and, thus, the contour integral are proportional to this velocity.

The transverse force and the moment of force on a missile may be expressed in terms of
the apparent areas of the missile cross sections. The transverse force due to body angle or
control-surface deflection on an interval taken along the length of a missile where the apparent
area is increasing is:

F =10 p v2 q1 A x~A(34)
L1 8 0 J 

The moment of force on this interval is given by
X XB

M= f (x-xc) ixdF. (35)
X =XA

Here, i is a unit vector pointing downstream.

Substituting Eq. (34) in Eq. (35) yields the following for the moment of force on this interval:

10
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f1801P

x XB

271 f (x - xc) ixdA.
X=XA

(36)

In a similar manner, Eq. (37) is obtained for the moment of force due to angular velocity of
pitch or yaw:

180MY ( 180 JTI
x X

Vano f (x-x') 2 ixdA.
X=xA

APPLICATION TO A TYPICAL MISSILE CONFIGURATION

A method of estimating the aerodynamic coefficient derivatives of a typical missile
configuration is described here. Top and side views of the missile configuration under con-
sideration are shown in Figs. 7 and 8. Various points along the length of the missile have been
numbered as follows:

5 4 3 c 2 1

Fig. 7 - Top view of typical missile configuration

5

Fig. 8 - Side view of typical missile configuration

11
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1 (a point where the cross section of the nose attains a maximum),
2 (beginning of wing),
C (moment reference center),
3 (trailing edge of wing),
4 (beginning of tail),
5 (trailing edge of elevator and rudder).

The value of x at the i th point along the length of the missile is denoted by xi.

One aspect of carrying out the method for determining the aerodynamic coefficient deriva-
tives is to determine apparent areas for the cross sections at a number of points along the

length of the missile. Notation is given below for apparent areas as given by Eq. (33) for the
cross section located at the station denoted by x. For angle of attack the apparent area is
denoted by ANa(x), where in this case X in Eq. (31) represents the angle of attack of the mis-
sile, a. The effect of this a for small angles is to give the boundary contour a rigid motion
with velocity Vc, as illustrated in Fig. 4, thus determining the boundary conditions for j.

For elevator deflection the apparent area is denoted by ANA(x), where, in this case, 71 in
Eq. 31 represents the elevator deflection 8p. The effect of this for small deflections is to contri-
bute to that part of the boundary representing the control surfaces a velocity V., while the
remainder of the contour assumes a zero velocity. This is illustrated in Fig. 5 and provides the
boundary conditions for 4.

For side slip angles the apparent area is denoted by A yp(x), where, in this case, 71 in Eq.
31 represents the angle of sideslip of the missile P3. The effect of this P for small angles is to
give the boundary contour a rigid motion with velocity Vc, thus determining the boundary con-
ditions for 4.

For rudder deflection the apparent area is denoted by A y8(x), where, in this case, in in
Eq. (31) represents the rudder deflection 8 y. The effect of this for small deflections is to con-
tribute to that part of the boundary representing the control surface a velocity Vc, while the
remainder of the contour assumes a zero velocity. This provides the boundary conditions for

The following equations introduce cross section coefficient derivatives. These are related
in a simple way to the apparent areas and are useful in expressing the aerodynamic coefficient
derivatives of the missile. Thus:

C'a (x) = - -o S ANa(x j, (38)

C'8 (x) = - 90 S AN8(X)j, (39)

Cyp (x) = - 90 A - y(x) k, (40)90 s Apx
and

Cy8(x) = - go-- Ay 8(x k. (41)
90 S

12
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Here, j and k are unit vectors in the cross-flow plane and in the directions of FN in Fig. 1 and
Fy in Fig. 2, respectively.

Formulas for estimating the aerodynamic coefficient derivatives of the missile
configuration are listed next.

CNa = CN'a (x3 ) - CN' (x4) + CNa (x5 ) (42)

CN8= CN8 (X 5) (43)
XitX 3 X 5 IV

Cma =- +f+f (x - x) dCNa(X) (44)

Cmnq 2 f + + f + (x - xc) 2 dCla (x) (45)

Cm 8 = - -b f (x xc) dCN' (x) (46)
x4

CYo = Cy3p(x) - Cr'(xA) + C (x 5 ) (47)

CY5= Cy 8(X 5 ) (48)

+ +f (x -x) dCy (x)9)
xC X3 x(

Cnr = _ 2 f+ f+x f (X-x-) 2 dC (x) (50)
T20 x2x

C=8 - l (x - x) dC 8 (51)
bx 4

In obtaining the normal force due to body angle, two intervals are considered. One of
these extends from the nose tip to the trailing edge of the wing and the other extends from the
beginning of the tail to the trailing edge of the elevator. Using Eqs. (1), (34), and (38), the
coefficient derivatives for the normal force due to body angle are expressed by Eq. (42). In a
similar manner the coefficient for side force due to side-slip angle is expressed by Eq. (47).

The normal force due to elevator deflection is obtained as the force on the interval
extending over this control surface. Using Eqs. (2), (34), and (39), the coefficient derivative
for this force is expressed by Eq. (43). Similarly, the coefficient derivative for side force due to
rudder deflection is expressed by Eq. (48).

In obtaining the pitching moments due to body angle and angular velocity, three intervals
are considered. The first extends over the nose, the second over the wings, and the third over
the horizontal stabilizer. Using Eqs. (3), (36), and (38), the coefficient derivative for the

13
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pitching moment due to body angle is expressed by Eq. (44). Using Eqs. (4), (37), and (38),
the coefficient derivative for the pitching moment due to angular velocity of pitch is expressed
by Eq. (45).

In a similar manner the coefficient for yawing moment due to side-slip angle is expressed
by Eq. (49), and the coefficient for yawing moment due to angular velocity of yaw is expressed
by Eq. (50).

The pitching moment due to elevator deflection is obtained as the moment on the interval
extending over this control surface. Using Eqs. (5), (36), and (39), the coefficient derivative
for this force is expressed by Eq. (46). Similarly, the coefficient for yawing moment due to
rudder deflection is expressed by Eq. (51).

It is apparent from Eqs. (42), (43), (47), and (48) that the coefficient derivatives for the
normal and side forces, namely, CNa, CN8, Cy,3 and Cy8, are dependent on the cross flows at
the three stations along the length of the missile numbered 3, 4, and 5. The other coefficients
involve integrations and are evaluated as approximating sums. This evaluation requires analyz-
ing a number of cross flows taken along the intervals of integration.

THE CIRCLE-WITH-MIDWING CROSS SECTION

In the special case, where the cross-section contour of a missile of angle of attack a is a
circle-with-midwing, the potential cross-flow problem has an analytic solution. The boundary
condition for a problem of this type is illustrated in Fig. 9. The following notation is also indi-
cated:

R (xi) (radius of circular cross section of missile)
s (xi) (semi-span of wing)

S

Fig. 9 - Circle-with-midwing cross section

14
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For this case, the cross-section coefficients [4] are given by

Ca(xi) = 90 s 1s2 (x,) - R2(Xi) + 2( i) (52)

Applying this formula, the pitch coefficient CNa may be estimated for a missile with the
configuration shown in Figs. 7 and 8, and which has circle-with-midwing cross sections. This
coefficient derivative is given by the formula:

.2 [R 4 (X 3 )

CNa. 90 S 1 2(X3) - R2(X3) + 52()3)

- R2 (X4 ) + S2(X5) _ R2 (X5 ) + R 4 (X5)

The formula given by Eq. (52) may also be applied in determining the coefficient derivatives
Cm& and Cmq. This is accomplished by substituting into Eqs. (44) and (45).

A COMPUTER PROGRAM FOR ARBITRARY
CROSS SECTIONS

A computer program has been developed which solves the potential flow problem for
shapes of the type encountered with missile cross sections. This program also determines the
apparent area of the cross section through evaluation of the integral expressed in Eq. (33).

A missile cross section can generally be represented by a region representing the body
along with line segments representing wings and various other airfoils.' The boundary of this
configuration will be the internal boundary for the potential-flow problem. Body angle or
control-surface deflection is represented by specifying the normal gradient along this boundary.
It is further assumed that the gradient of the potential goes to zero at infinity.

The calculation is based upon source distribution methods similar to those which have
been used by J. L. Hess and others [5-7] in several computer programs. With these methods,
a general potential function is represented as a linear sum of a fundamental system of potential
functions, each of which is derived from a source of some type. The source may be a point
monopole or dipole or a continuous distribution of one of these types.

Thus we may represent a general potential function as
N

0 (X1, X2) )Ci0XI, X2). (54)
i=t

Here, xl and x2 are coordinates in the cross-flow plane. The expression

0(xI, x2 ) i = 1_., N

represents the fundamental system of source-derived functions. Each of these functions takes
on a weight denoted by

C1 i = 1_.,N.
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We may derive the velocity field from the potential by taking the gradient of the latter, as
shown by the following equations:

V(x, X2) = [8- , (55)

and

Vj(x1 , X2) = [axL, axj. (56)

Applying these equations to Eq. (54) results in the following general expression for the velocity
field:

N
V(x 1, X2) = C1 V (x1 ,X2) (57)

1=1

A set of N points are chosen on the boundary of the contour as locations for imposing the
boundary condition. The coordinates of these points are denoted by xtj and x2 j where
(j = 1,...,N). Also, the unit normal to the boundary at each of these locations is denoted by
nj where (j = 1,...,N). As a boundary condition, the normal velocity Wj is specified at each of
these points. The imposition of this condition is expressed by

N
Wj = I Ci Vi(x-j, X2 4fnj. (58)

i-I

This relation represents N simultaneous linear equations for the weight factors C1. Solving this
system of equations determines the value of each C,, whereupon the velocity potential b and
the velocity V may be calculated from Eqs. (54) and (57). The apparent area vector may be
determined by evaluating Eq. (33) with a numerical integration process. The general represen-
tation of the velocity potential is based on its expression in terms of sources. This may be done
in a variety of ways. Many investigators (See Ref. 6 for citation of additional refs.) have, for
instance, utilized continuous density distributions on the body surface.

For this investigation, the body has been treated differently from the airfoils. For the
body, point sources located within and at some distance from the boundary contour have been
utilized. For a point source, the velocity potential and the velocity at the point (xI, x2 ) are
given by the formulas

= In [(xI -yl)2 + (x 2 - Y2)2 (59)

and

V = (XI YI, x 2 - Y2)60
(X - yl)2 + (x2 - Y )2 (0

Here, yt and Y2 are the coordinates of the point source. For airfoils which are represented as
line segments, continuous dipole distributions are utilized. The line segment representing a
wing is divided into small elemental segments, and, on each of these, the dipole distribution is
represented by a quadratic function. For each elemental segment, we denote its length by As
and introduce coordinates xl and x2 such that the segment lies on the xl axis centered about
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the origin. To accomplish the general quadratic representation, three fundamental potential
functions are introduced corresponding to each elemental segment. These three functions are
derived from dipole distributions, the first of which is constant while the second and third are
proportional to xl and xi , respectively.

For a constant dipole distribution on a line segment, the velocity potential and the velo-
city at the point (xi, x2 ) are given by the following formulas:

C = Incl x?2 + x22- |-4| Asx2J (61)*

and

1 - 2As xi x 2 As (xi - X2 _ J2] (62)

1[X + Asj2+ 2 jxJ - ]2 X221

For a dipole distribution which is proportional to xl, the velocity potential and the velocity are
given by

0 L x xl - x2 0 (63)
As

and

VL = (ck, - ') + Xl Vc - X2U (64)
As (4

where we have introduced the following auxiliary quantities:

't=2 In xt - JL . -(52

and

(xt+ -J2S+x22 AXS- + x2

For a dipole distribution which is proportional to x?2, the velocity potential and the velocity are
given by

*The function (net w is defined as the angle of inclination of w in radians where -7 < Inci w < r.
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(x2- x2) o- 2 xI x2 + As x2 (67)
As 2

= x2X1 + (x - x 2) V- 2 A X|2 2x x 2 U+[AS(

As 2 (68)

In order to determine the N weight factors C,, an equal number of linear equations are esta-
blished. Each of these equations are generated by specifying the normal velocity W, at a point
on the boundary. Those points where the normal velocities WV, are specified shall be referred
to as control points. For each monopole source chosen internal to the body, a control point is
selected on the body boundary. For each elemental segment of a wing, three fundamental
functions are derived. This requires the determination of three corresponding weights C,.
Therefore, on each such elemental segment, three control points are selected.

In formulating a particular calculation, choices are made of the control points and of the
sources from which the fundamental system of basic functions are derived. No definite pro-
cedure has been established for making these choices in a way which approaches the optimal.
Rather, making satisfactory choices requires the use of good intuitive judgment in combination
with knowledge learned from a moderate amount of computational experimentation.

Using a circle-with-midwing profile, a certain amount of computational experimentation
was performed. For this profile, analytic answers are available for comparison. Figure 10 illus-
trates how the sources were chosen for this typical cross-flow calculation. The conclusions
drawn from this undertaking are assumed to have general validity for bodies with wings.

MONOPOLE
XSOURCE

WING ELEMENTAL
SEGMENT
SOURCE

BODY

Fig. 10 - Choice of sources for missile cross-section profile
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One conclusion deduced is that in order to obtain accurate results it is necessary to let the
line segment representing an airfoil penetrate a distance into the body, as shown in Fig. 10.
When this line segment was allowed to stop exactly at the body boundary, a good approxima-
tion to the true solution was unobtainable.

Another observation is that a modest increase in accuracy is obtained by letting the size of
the elemental segments become smaller as the tip of the wing is approached.

The information defining a particular cross-flow problem is summarized next. Associated
with the body is the position of each interior monopole along with information regarding ele-
ments on the body boundary. The latter consists of the location and orientation of each ele-
ment along with control-point positions. Associated with an airfoil is the positon and orienta-
tion of the line-segment representation along with information regarding its partitioning into
elemental segments; each elemental segment has three control points designated on it. Also
included among the given information is the normal velocity Wj which is specified at each con-
trol point on a body boundary or airfoil.

Rather than inputting the given information with enumerative lists, various portions of it
are generated by subroutines using analytic formulas. For example, the program contains a
subroutine which generates all the necessary defining information for an airfoil. Another sub-
routine does this for a circular arc. A number of subroutines such as these can be used to piece
together an entire cross-section contour. Upon execution, the computer program calculates the
value of the velocity potential b and the velocity V at each control point. It also calculates the
weights C, of the various fundamental functions. In addition, it calculates the apparent area
vector A as given by Eq. (33).

TEST CALCULATIONS

In order to test the computer program for accuracy and computation time, the program
was executed on a CDC 6600 computer. Profiles were run for which answers could be obtained
independently using analytic formulas. The profiles used were the circle, circle with midwing,
and wing only. These are all special cases of the general circle-with-midwing problem for which
an analytic result (Ref. 4) is available for comparison. The general expression for the apparent
area magnitude A due to a vertical cross flow is given by

A = 7r(s 2 -R 2 + R4/s 2 ) (69)

Here, R is the radius of the circle and s is the semi-span of the wing, as indicated in Fig. 9.
Analytic comparison values of the apparent area for the profiles used in the test computations
were obtained by using the following three sets of values in Eq. 69. The values used for R and
s were: R = s = 1 for the circle; R = 1/2, s = 1 for the circle with midwing; and R = 0, s = 1

for the wing only. For the circle-with-midwing profile, test calculations were performed using
various numbers of fundamental function generating elemental sources. These will be referred
to as elements. The results of the test calculations using 24, 42, 84, and 168 elements are sum-
marized in Table 1. In each case, the number of elements is broken down into the number of
monopole types representing point monopoles within the body, and the number of dipole types
representing continuous dipole distributions on an elemental segment of a wing. This table
indicates the improvement in accuracy as the number of elements is increased. The 0.27%
error for 42 elements, however, should be regarded as unusually low due to chance and not
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really fitting the trend. Table 1 also indicates the rapid increase in computation time as the
number of elements is increased. It is apparent that a reasonable combination of accuracy and
computation time is obtained when the number of source elements is on the order of 84. In
order to test the program for the effect of varying the contour configuration, calculations were
performed for the circle, circle-with-midwing, and wing only using 84 elements in each case.
The results are shown in Table 2, indicating in each case the individual number of monopole
and dipole elements used.

Table 1 - Circle With Midwing

APPARENT AREA (ANALYTIC) = 2.5525

No of | No. of No. of | Apparent Error Execution

Monopole Dipole Area Time
Elements Elements Elements (Computed) ) (sec)

24 6 18 2.3257 8.89 0.972
42 12 30 2.5594 0.27 2.56
84 24 60 2.5638 0.44 12.5

168 48 120 2.5533 0.031 78.1

Table 2- Various Profiles Using 84 Source Elements

Missile Number Number Apparent Apparent
Configu- of of Area Area Error
ration Elements Ele [computed] [analytic] MElements Elementsl

Circle 84 0 3.1416 3.1416 0

Circle-
With- 24 60 2.5638 2.5525 0.44
Midwing

Wing 0 84 3.1380 3.1416 0.11
Only
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It is observed in Table 2 that near-perfect accuracy is obtained with the circular profile
(assumed typical of a body-only type of contour). The least accuracy or highest error (0.44%),
is obtained using the circle-with-midwing. This profile (assumed typical of a wing-body combi-
nation) is the case most useful for revealing any possible error. It is found that an intermediate
degree of accuracy, or next highest error (0.11%) is obtained with the wing-only profile.

SAMPLE CALCULATIONS

This computer program is of general utility for performing cross-flow calculations for
almost any shape that would be encountered with a missile cross section. Sample calculations
have been performed for a few cases where analytic results are not available. Apparent areas
are calculated for boundary conditions representing pitch, elevator deflection, yaw, and rudder
deflection. The results of these calculations are given in Tables 3, 4, and 5. In Table 3, a
rudder has been added to the circle-with-midwing configuration. Table 4 shows results for a
configuration consisting of simply a circular body and a rudder. Results for a tri-tail
configuration are given in Table 5.

Table 3 - Circle With Midwing and Rudder (114 Elements)

Type of Control Configuration Apparent Area

-Magnitude

A tI/2>'/2>

Pitch 2.55

Elevator tt 1.14
Deflection

Yaw 1.64

Rudder 0.548

Deflection
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Table 4 - Circle With Rudder (114 Elements)

Type of Control

Yaw

Rudder
Deflection

Configuration Apparent Area
Magnitude

1.62

0.538

Pitch 0.785
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Table 5 - Tri-Tail Configuration (114 Elements)

Type of Control

Pitch

Elevator
Deflection

Yaw

Rudder
Def I ecti on

Configuration Apparent Area
Magnitude

2.14

1.00

2.14

0.579
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CONCLUSIONS AND IMPLICATIONS FOR FURTHER EFFORT

Expeditious and versatile procedures for estimating sonic aerodynamic coefficient deriva-
tives have been developed. This endeavor was based upon the generation of a computer pro-
gram to solve the potential cross-flow problem. This program is similar to certain other existing
ones but has some necessary differences. The development is based on slender body theory
and gives estimates which can be applied to missiles flying at sonic speeds. These estimates are
also helpful in determining approximations for the coefficient derivatives in the subsonic and
supersonic ranges.

There is a considerable need for these aerodynamic coefficient estimates as inputs to com-
puter and hardware simulations. These simulations deal with a wide variety of analyses of the
expected flight behavior of actual missiles under a variety of conditions. An extensive effort is
needed to investigate the implications of certain postulated characteristics for future missiles.
This effort would involve working out a missile design within the constraints of the postulated
external characteristics. The resulting design would be extremely useful in bounding the threat
by indicating the outer limits of a missile's maneuvering capability. Aerodynamic coefficients
based on this design would provide valuable inputs for future simulations which could be used
to study the expected outcome of missile-ship engagements involving newer missile types.

A capability for analytic determination of aerodynamic coefficient derivatives is essential
for any comprehensive investigation of missile-ship engagements. It is needed not only for the
analysis of existing missile threats but also for the examination of possible future missile
threats.
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